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Abstract&This paper considers stochastic three-dimensional non-stationary temperature fields described 
by stochastic heat conduction equations with random coefficients and by stochastic initial and boundary 
conditions. A numerical method is suggested allowing one to determine non-stationary and stationary 
three-dimensional fields of expected values, c rrelatlons 
temperature fields in three-dimensional bodies % 

and dispersions of stochastic non-stationary 
f,complicated shape. The method is based on stochastic 

mathematical model discretization by the methods of finite differences or elements and on the solution of 
the Volterra stochastic integral equations. Random functions figuring in the mathematical mode1 are the 
functions of coordinates and time with limited realization. An example of the use of the, method is 

considered, and comparison is given between the results obtained and exact data. ( 

1. INTRODUCTION 

THE TEMPERAWRE fields of real objects under real 
conditions of their functioning are stochastic. The 
stochastic character of the temperature field depends 
on the dominating random factors. Often such factors, 
such as the powers of heat sources and sinks, thermal 
conductivity coefficients, coefficients of heat transfer 
from the body surface to the medium, ambient tem- 
perature, and the width of the gap between contacting 
bodies are random. The statistical variation of these 
factors can be substantial. It results from the toler- 
ances in manufacturing processes, non-controlled 
random factors and random fluctuations of external 
parameters that characterize heat transfer with sur- 
rounding medium. The consequence is that the tem- 
perature at each point of the body and at each time 
instant represents a random variable. 

In those cases when random variation of tem- 
perature in a body is insignificant and can be ignored, 
the temperature field is rather precisely described by 
the deterministic heat conduction equation. If the ran- 
dom character of the temperature field cannot be 
neglected or high requirements are imposed on the 
adequacy of the temperature distribution simulation, 
then it is necessary to solve the stochastic heat con- 
duction equation. 

The most practically important characteristics of 
the stochastic temperature fields are the fields of its 
first and second moments, viz. of expectation and 
dispersion. These will be called the solutions of the 
stochastic heat conduction equation. 

Stochastic temperature fields are described by 
stochastic heat conduction equations with stochastic 
boundary and initial conditions. Generally, co- 
efficients in the operators of the equation and 

boundary conditions are random functions of coor- 
dinates and time. 

The following methods have been widely used to 
date for solving stochastic heat conduction equations : 
perturbation methods [l-3], stochastic Green’s func- 
tion method [4, 51, methods allowing one to obtain 
equations for expectation and dispersion fields [3, 6 
81, stochastic numerical methods of finite elements and 
finite differences [9-111. In some cases one succeeds 
in finding an analytical solution of stochastic heat 
conduction equations [12-151. It is assumed in many 
works that random coefficients in the equation and 
boundary conditions are white Gaussian noises. For 
this case, using Ito’s stochastic integral [5-71, partial 
differential equations were obtained for three-dimen- 
sional non-stationary expectation fields and stochastic 
temperature field dispersions. In ref. [8], using the 
method of time-ordered cumulants, equations were 
obtained for non-stationary one-dimensional dis- 
tributions of expected values and for the dispersion of 
the integral of stochastic temperature. The method of 
finite elements for the non-stationary stochas&ic heat 
conduction equation has been developed for the case 
of a volumetric source assigned in the form of the 
white Gaussian noise [9]. The method of finite 
elements and finite differences has been developed for 
the stationary stochastic heat conduction equation 
with random coefficients [ 10, 111. 

In the present paper a numerical method is sug- 
gested for determining non-stationary three-dimen- 
sional fields of expected values and dispersion of the 
stochastic temperature field. The coefficients entering 
into the stochastic heat conduction equation and 
stochastic boundary conditions are random functions 
of coordinates and time. 
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NOMENCLATURE 

C heat capacity 
c(x, t, w) random function 
El.1 expected value operator 
G, 8G three-dimensional region of a body, 

boundary of the region 
K,, K correlation matrices of stochastic 

temperatures at grid nodes 
k number of points of time interval 

decomposition 
k(x, r, w) stochastic thermal conductivity 

coefficient 

T,(x, w) stochastic initial temperature 
distribution 

F*, i= expected value vectors of stochastic 
temperatures at grid nodes 

t time 
At time step 
x = (x,, x2, xJ point in three-dimensional 

space. 

n number of nodes in the grid covering 
the region Greek symbols 

Q (x, r, ru), q(x, t, w) stochastic volumetric a(x, t, CD) stochastic coefficient of heat 
and surface heat flux densities transfer from body surface to 

T(x, w) stochastic stationary three- medium 
dimensional temperature field P material density 

T(x, t, w) stochastic non-stationary three- fl*,g standard deviations vectors of 
dimensional temperature field stochastic temperatures at grid 

T,(x, t, w) stochastic ambient temperature nodes 
Tb(x, t, co) stochastic temperature 5 time interval 

distribution at body boundary w elementary events. 

2. STOCHASTIC MATHEMATICAL MODEL the measurable space (a, Q, 9) with the probability 

In a general case, the stochastic non-stationary tem- 
perature field T = T(x, t, w) in the three-dimensional 
body G of the three-dimensional space x = (x,, x2, x3 
with the boundary cYG is described by the following 
stochastic heat conduction equation in (x, t, o) E 
G x [0, z] x R : 

pc;+A(x,t,co)T= Q(x,t,co), (1) 

with initial condition in (x, w) E G x R : 

Ux, 0, ~1 = To k ~1, (2) 

and boundary conditions in (x, t, w) E 8G x (0, z) x Cl : 

T = TL, (x, t, w), (3) 

k(.u, f, w) $- = q(x, t, co). (4) 

k(s, t,~) $;+x(x, t,co)[T- T,(x, I,u)] = q(x, t.u), 

(5) 

which can be prescribed simultaneously on different 
parts of the boundary 8G. The stochastic operator 
A (x, t, o) has the form : 

(6) 
In equations (l))(6) the quantity m denotes elemen- 
tary events in the space of elementary events f2 from 

measure 9 prescribed on the a-algebra. 
In practice, all the random functions in the stoch- 

astic mathematical model (l)-(5) and operator (6) 
vary within a range. Therefore, their probability den- 
sities for each x E G + aG and t E [O, z] are truncated, 
i.e. they are prescribed within the ranges of variation 
of random functions and are equal to zero beyond 
these intervals. It is assumed that all of the random 
functions are statistically independent. 

The three-dimensional body G may have an arbi- 
trary shape and consist of several dissimilar materials. 

3. DISCRETE ANALOG OF THE STOCHASTIC 

MATHEMATICAL MODEL 

Apply the method of finite differences [16] or the 
method of finite elements [17] to equations (l)-(S) 
with operator (6) in the region G+dG for each w E 
R. Then the stochastic discrete analog of stochastic 
mathematical model (l)-(6) will be obtained in the 
form of the matrix system of stochastic ordinary 
differential equations : 

pW,4 
~ + R(t, m)T(t, w) = F(t, a)+ .S(t, w)@(t, co), dt 

PT(O,w) = To(w), (7) 

where T(t, w) = (T,(t, co). . T,(t, co)’ is the stochastic 
vector of temperatures at the n nodes of the grid cover- 
ing the region G+aG; R(t,w) and S(t,co) are the 
familiar stochastic n x n matrices ; P is the deter- 
ministic n x II matrix ; F(t, co), @(t, w) and T,,(o) are 
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the familiar stochastic n-vectors which are statistically 
independent of one another and of the matrices 
R(t, w) and s(t, w). The matrices R(t, w) and ,S(t, o) 
are statistically dependent. 

If the stochastic matrix equation (7) is obtained by 
the method of finite elements, then the vector T(t, w) 
represents the vector of random coefficients T,(t, w) 
entering into the linear combination : 

where p,(x) is a system of expansion functions. 
The stochastic matrices R(r,w) and S(r,w) ob- 

tained by both methods can be different but they are 
of band and symmetric type. The deterministic matrix 
Pin the method of finite elements is of band and sym- 
metric type ; in the method of finite differences the mat- 
rix P = Z, where Z signifies the unit diagonal matr f xJ 

The stochastic matrix differential equation (7) is 
equivalent to the Volterra second-kind stochastic 
integral equation for each w E s2 : 

PT(L~)-PT(O,~)+ ‘R(:,W-(5,o,)dt s 0 

= 
s 

’ P(5, W) + S(S, 0)@(5, a)1 d5. (9) 
0 

Replace the integrals in equation (9) by quadrature 
formulae [ 181. For this purpose, divide the time inter- 
val [0, t] into k intervals by the points 0, t,, fZ, , tk. 
Then, for the time instant ti, i = 1,2,. . , k(to = 0, 
tk = t) the stochastic integral equation (9) will be 
transformed into a system of stochastic matrix linear 
algebraic equations : 

PT,-PT,+ i a,R,T, = i a,(F,+S,@,), 
;=0 ,=ll 

i= I,2 ,..., k, (10) 

where T, = T(f,,w), @, = cD(t,.w), F, = F(t,, o), S, = 
S(t,,w), R, = R(t,,w) are the stochastic vectors and 
matrices at the time instant t, ; a, are numerical co- 
efficients in the quadrature formula. 

The integrals can be replaced by finite sums with the 
aid of various formulae, say, the Simpson trapezoidal 
rule. 

For the clarity of presentation assume that the 
initial temperature distribution is equal to zero, 
T, = 0 ; and that the points t,, i = 1,2,. , k, are dis- 
tributed uniformly with the step At. As a quadrature 
formula, use will be made of the trapezoidal rule, so 
that the coefficients in equation (10) are equal to : 
a,=ak=At/2,al=a,= . . . =ak_, =At. 

After simple transformations, the system of 
stochastic matrix linear equations (10) can be re- 
duced to the following partitioned matrix system of 
equations in the unknown lump vector 

T. T*(w) = [T,(w). . ‘T&41 . 

where R,(w) is the stochastic partitioned (kn) x (kn)- 
matrix of the form : 

R,(w) = 

-2P 
At 
IR,(4+P 

. . . . . . . . . . . . . . . . . . . . . . . 

(-l)k-‘2P (-l)k-22P zR,(w)+P 

S,(w) is the stochastic partitioned diagonal 

(12) 

(kn) x (kn)-matrix along the diagonal of which there 
are stochastic matrices S,(W), S*(w), . . , S,(w) ; 
F,(w) = (F,(w). . .Fk(~))T and Q*(o) = (Q,(w). .mk 
(co))= are stochastic lump (kn)-vectors ; the superscript 
T means transpose operation. 

The F,(w) and @*(a) vectors are statistically inde- 
pendent of one another and of the matrices R,(w) and 
S*(w). 

4. DETERMINATION OF THE NON-STATIONARY 
STOCHASTIC TEMPERATURE VECTOR 

Let us represent the elements I~+,,, (m, I = 1, 2,. . . , 
n) of the matrix Ri(o) in the form of the sum of the 
expected value of P‘~,,,,,, and random value of P&,,,(O) 
with E{r&m,(~)} = 0, i.e. T(~),,,,(W) = ?Cijm,+ rl)ljm,. 
From this, a similar equality follows for the matrix 
R,(w), i.e. R;(w) = Z?,+RF(o) with E{RF(w)} = 0. 
Then the stochastic matrix R,(o) can be presented 
as : 

R,(w) = Z?* + ; RO,(w), 

where Z?, is the deterministic partitioned (kn) x (kn)- 
matrix of the form : 

R,(w) = 

L 

$?,P 

-2P 
At _ 
TR2+P 

. . . . . . . . . . . . . . . . . . . . . . . . 

(-1)~-‘2P(-ly2P...~Z&+P 

(13) 

R:(w) is the stochastic partitioned diagonal 
(kn) x (kn)-matrix along the diagonal of which there 
are stochastic matrices R:(w), R!(w), . . ., R:(o). 
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The stochastic system of equations (11) has the 
stochastic vector T,(w) as its solution if the stochastic 
matrix R,(w) for each we0 has its reciprocal. The 
matrix R,(w) can be inverted if for all w E Q the fol- 
lowing inequality holds (At/2) 11 l?; ’ - R:(o) 11 < 1. 
Under this condition, the stochastic matrix R,(w) can 
be presented by an infinite converging matrix series 
[19] : 

where H,(o) = i?;‘Ri(w); I is the unit diagonal 
(kn) x (kn)-matrix. 

The matrix norm (( C(w) (( of the stochastic matrix 
C(w), having limited realizations, will be understood 
to represent the largest deterministic matrix norm for 
all w E R. Since the realizations of the random 
elements c,.(w) of the stochastic matrix C(w) are lim- 
ited and obey the truncated distribution laws in the 
intervals [ci, $1, it is evident that rr~]]C(w)J( is 

attained when each random element c,.(w) takes on 
one of the values c:(, or c:;. 

Given an expression for the reciprocal stochastic 
matrix R; ’ (co), the system of equations (11) will yield 
the stochastic vector of temperatures : 

T*(w) =; z (-l)i $H*(W) ‘R;’ 
I-0 [ 1 

the correlation matrix : 

K, =y f” (- l)‘+/E 

x [+;(-)I’}, (17) 

where Z*(W) is the stochastic (kn) x (kn)-matrix equal 
to : 

F.+ = E[E;(o)] and a, = &J@,(w)] are the vectors 
of expectations ; Km = E [I;,(o) F:(41> Km = 
E[F.+(w) @~(a~)], & = E[@,(o) @z(w)] are the fam- 
iliar correlation (/WI) x @)-matrices. 

Naturally, for practical calculations of the vector 
T.+ and matrix K+ some first terms in series (16) and 
in a double series (17) are taken. Series (16) and (17) 
converge rapidly and, as a rule, with an accuracy 
sufficient for practice it is possible to restrict ourselves 
to the terms involving the matrix (At/2)H,(o) with 
the degrees not higher than two, and, in some cases, 
not higher than four. 

Expressions (16) and (17) can be easily pro- 
grammed by applying the technique of operation with 
partitioned matrices and taking into account that the 
matrix 1, has a simple structure, the matrix R:(w) is 
of partitioned-diagonal type, and the matrices RF(w) x[~*(~)+S*(w)@*(~)l. (15) (i= 1, 2, ..,) 

k) have a band structure and are sym- 
metric. In accordance with the structure of the matrix 

5. NON-STATIONARY MOMENTS OF THE 

STOCHASTIC VECTOR OF TEMPERATURES 

The stochastic vector of temperatures T,(w), which 
is determined by expression (15), allows one to deter- 
mine its moments, viz.: the vector of the expected 
value i=* = E{ T,(w)}, correlation matrix K, = 
-W,(o) x T,T(w)l, covariance matrix c, = 

- -T E[T;(w) T:(o)] = K, - 7’,T,, To,(w) = T,(w) - F*, 
the vector of dispersions D, equal to the diagonal of 
the covariance matrix C, and the vector of standard 
deviations cr* = a. 

Let us apply the operator of the expected value to 
the stochastic vector T,(o) and to the product 
T,(w)Ti(w). Resorting to the statistical inde- 
pendence of the vectors F* and @, of one another and 
of the matrices R:(w) and S,(w), we obtain : 

Ii, (13), the reciprocal matrix R; ’ is also partitioned 
under triangular matrix with the matrices-blocks R,, 
having the dimension n x n. It can be easily shown 
that the matrices-blocks R,,, i 2 j, i = 1,2, . , k, can 
be calculated from the following recurrent formulae : 

i = J’, 

R,,, = 2R,,P{R*i -,,, -R,;_,,+...+(-l)‘-‘+‘R,}, 

i>j. 

The number of terms in the latter.formula is equal to 
i-j. The calculation of the reciprocal matrix R;’ 
from the above-given formulae is convenient for pro- 
gramming. As compared with direct computation, it 
requires much smaller expenditure of memory and 
machine time. 

the vector of the expected value : 

T, =g $ (-1)‘B 
I- 0 

6. STATIONARY MOMENTS OF THE 

STOCHASTIC VECTOR OF TEMPERATURES 

X ; H,(o)‘& ’ [p* + S,(w) 6.J 
The stationary stochastic temperature field T(x, CO) 

; (16) in the three-dimensional region G of the three-dimen- 
sional space x = (x,,x2,xj) with the boundary aG is 
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described by the stationary stochastic equation of heat 
conduction in (x, w) E G x fi : 

4x, 01 Z-(-u, 01 = Q 6, w), (19) 

with the time-independent stochastic operator A(x, w) 
of form (6) and with time-independent boundary con- 
ditions of form (3)-(5) determined in (x, w) E 8G x !J 

The random functions of the stationary math- 
ematical model for all x&G + 8G satisfy the conditions 
listed in section 2. 

Replacing equation (19) with the boundary con- 
ditions by their discrete analog by the method of finite 
differences or by the method of finite elements, we 
shall obtain the stochastic matrix system of linear 
equations for determining the vector of stochastic 
temperatures T(w) = [T,(w) . T,(w)]~ at n nodes of 
the grid : 

R(w)T(w) = P(w)+S(w)aqo). kw 

Representing the stochastic matrix R(w) as a sum 
of its expected value l? and stochastic matrix R’(w) 
with E[R’(w)] = 0, we shall expand (just as it was 
done in Section 4) the reciprocal stochastic matrix 
R-‘(o) = {RIZ+R-‘R”(w)]j-’ into a converging 
matrix series and obtain from equations (20) the 
stochastic vector : 

T(w) = f (- l)‘P(w)R-‘[F(w) + S(w)@(w)], 
,=O 

(21) 

provided that I( H(w) 11 < 1, where H(w) = l?‘R’(w). 
Applying the expected value operator to the vec- 
tor T(w) and to the product T(w)TT(w), we shall 
obtain the stationary moments of the stochastic tem- 
perature vector, viz. the n-vector of the expected 
values : 

P = T (- l)‘E{H’(w)R-’ [P+s(w)Q} ; (22) 
i=o 

the correlation n x n-matrix : 

K = f (- l)‘+‘E{H’(o)R-‘Z(w) 
‘,_I = 0 

x (8-‘)T[H’(~)]‘}, (23) 

where Z(w) is the stochastic n x n-matrix of form (18). 
For practical calculations from formulae (22) and 

(23), it is usually sufficient to limit ourselves to the 
series terms involving the matrices H(w) with the 
degrees not higher than two or four. 

7. NUMERICAL EXAMPLE 

As an example demonstrating the application of the 
proposed method, consider a one-dimensional plate 
of thickness 2d with the stochastic heat conduction 
coefficient k(x, w). Deterministic temperatures are 
assigned on the planes of the plate. The initial tem- 
perature distribution is equate to zero. The stochastic 

non-stationary temperature field of the plate T(x, r, w) 
is described by the heat conduction equation for 
xE[-d,d] and t > 0: 

3T(x, t, 0) a 
pc dt =x W,LW) 

[ 

aw, 4 w) 
ax I > 

with deterministic boundary conditions for t > 0 : 

T(-d,t,w) = T,, T(d,t,w)= T,, 

with initial condition : 

T(x, 0,w) = 0. 

The stochastic thermal conductivity coefficient rep- 
resents a random function of the coordinate x and is 
equal to : 

where $(w) is a random quantity with E[$(w)] = 0 
which obeys a certain truncated law of distribution 
within the range of its variation [-I),,,, t+bm] ; 
a = km+ k,x/2d, b = x2/d2- 1 ; k,, k2 are the deter- 
ministic thermal conductivity coefficients on the 
boundaries of the plate x = -d and x = d, respec- 
tively; k, = (k,+k,)/2, kd = k2-kl. 

A similar problem, was considered in [2] where a 
stochastic analysis of the contact heat conduction 
problem was performed. 

Under the conditions of the example considered, 
the following initial numerical data were adopted: 
d = 0.02 m, k,/pc = 3 x lo-’ m2 ss’, k2/pc = 5 x 10P6 
m2 SK’, T, = 150°C T2 = 25°C. The random quantity 
$(w) obeys the uniform distribution law with the 
probability density f($) = l/2$,,, within the interval 
[-$,, $,,J and f(ll/) = 0 outside the interval 
[-$,, $,,J, where $,,,/pc = 9.7 x 10m6 m2 SK’. The 
standard deviation of the random quantity $(w) is 
equal to a,/pc = 5.6 x 10e6 m* s-’ and comprises 58% 
of the tj,,, value. 

To obtain the discrete analog of the mathematical 
model, the method of finite differences was used. The 
plate t-d, d] was covered by a uniform grid with the 
nodesx, = ih,i= 0, l,..., 20 and step h = 2d/20. The 
node x0 = 0 is located on the plane x = -d, the node 
xzo = 20 is situated on the plane x = d and the node 
xIo = 10h is located at the centre of the plate at x = 0. 
The time from zero to 180 s was uniformly split into 
k = 5 intervals with the step At = 36 s. ??

Calculations of non-stationary and stationary &s- 
tribution of the expected value T’= T(x, t) and of 
the standard deviation 0 = a(x, t) of the stochastic 
temperature were performed from equations ( 16)) ( 17) 
and (22), (23), respectively. Leaving in matrix infinite 
series only the terms involving @with the degree i d 2, 
these equations can be converted to : non-stationary 
moments provided that 

(At/2)lti,l* II H, It < 1: 

T* =g 1 (--I)‘@$‘) l?,‘F,, 
1<2 
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FIG. 1. The fields of the expected value for the stochastic 
temperature field of the plate at different times in the second- 

order approximation (O)+xact solution 
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FIG. 2. The fields of the standard deviations in the stochastic 
temperature field of the plate at different times in the : (-) 
second- ; and (- - -) fourth-order approximations : (O)- 

exact solution. 

K* =&!jt ,+g2 (- l)‘+‘E{ti’+‘l 

stationary moments provided that l$,,,/ * 1) HII c 1 : 

F= 1 (-l)‘E{$‘)H’R-‘F, 
r<* 

K = c (- l)‘+‘E[@+‘]H’8-’ FF=R-‘(HT)‘. 
1+/s z 

Note that in the given case the matrices He and Hare 
deterministic and that all the odd moments of the 
random quantity $(o) are equal to zero. 

The results of calculations of non-stationary and 
stationary expectations and of standard deviations of 
the stochastic temperature field at the nodes of the 
plate grid for time t = 108, 180 s and t = co are pre- 
sented in Figs. 1 and 2. Also given in Fig. 2 is the 

stationary distribution of standard deviation cal- 
culated in a higher-order approximation (shown by 
dashed line in Fig. 2) when the terms r+P with the degree 
up to the fourth order inclusive are retained in the 
series, i.e. the summation in the expression for K is 
carried out for all i andj such that i+j < 4. 

Comparison was also made between the ap- 
proximate stationary moments F and 0 and exact 
moments Fe(x) = E[T(x, s)] and o,(x) = {E[T(x, w) 
-Te(x)J*}“2 (shown by circles in Figs. 1 and 2), 
where : 

w, WI = T, + CT* - ~,)cp(x, w)/cp(& Q), 

3 
44x-a 0) = 

s 
dx/k(x, w). 

-d 

Comparison of approximate stationary and exact 
moments shows that in the second-order approxi- 
mation the expected value of T fully coincides with 
the exact one, whereas the standard deviation cr differs 
from the exact one by no more than 15%. The stan- 
dard deviation rr, calculated in the fourth-order 
approximation, differs from the exact one by no more 
than 3%. 

The dynamics of the standard deviation show that 
with time the maximum values of rr grow and shift to 
their stationary maximum values. A sharp decrease in 
0 at the point with the coordinate x/d = 0.4 is ex- 
plained by the fact that different realizations of the 
stochastic temperature T(x, w) intersect in the neigh- 
borhood of the point x/d = 0.4. Therefore, its stat- 
istical variation at this point is insignificant. 

8. CONCLUSION 

The proposed numerical method allows one to cal- 
culate non-stationary and stationary fields of expected 
values, correlation matrix and dispersion of the stoch- 
astic temperature field in an arbitrarily shaped three- 
dimensional body. The coefficients in the stochastic 
mathematical model are arbitrary random functions 
of coordinates and time with limited realizations. The 
discrete analog of the stochastic mathematical model 
is obtained by the methods of finite differences or finite 
elements. The moments of the stochastic temperature 
vector are obtained in the form of converging matrix 
series. Calculation of the moments with an accuracy 
sufficient for practical purposes requires a small num- 
ber of series terms. The method can be easily pro- 
grammed. 

If random functions in the operator of the math- 
ematical model are stationary random processes or 
Gaussian random functions or if they are statistically 
independent at all the modes of the grid in space 
and time, then the expressions for non-stationary and 
stationary moments simplify significantly. 

Mote that application of the method of finite 
elements for stochastic mathematical models is less 
convenient, in our opinion, as compared with the 
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method of finite differences. This is due to the fact that 
to obtain the dispersion of the stochastic temperature 
distribution 

D(x, 0 = i JWJ/)cpi(+P,(X) 
!., = 1 

8. 

9. 

[see equation (8)] it is necessary to calculate the full 
correlation matrix K = E( T, - T,). 

The assumptions about Gaussian white noises were 
10. 

not made, since these, as a rule, are not adequate to 
real random processes in heat conduction. 

11. 
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